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● Context  

The electrification of transport, particularly the increasing adoption of electric vehicles (EVs), 

is expected to impose significant demands on the electricity infrastructure in the near future 

[1]. The timing of peak demand for EV charging often aligns with peak household 

consumption, especially during evening hours when most people return home from work and 

plug in their EVs. This synchronization can indeed lead to an increase in total peak load on the 

electricity grid. This simultaneous surge in demand poses significant challenges for grid 

operators, particularly in regions where grid capacity is already constrained [2]. Electric vehicle 

smart charging (EVSC) provides opportunities for better managing and incorporating this 

additional electricity demand within the boundaries of the existing grid. EVSC strategies are 

also relevant for groups of EVs embedded within a distribution network, where charging needs 

to be coordinated to prevent network constraints from being violated [3]. 

In this project we are looking to propose smart charging strategies. Mathematically, these 

strategies can be formulated as a constrained optimization problem. The constraints are the 

capacity of the charging station, power limitations, charging time limits, and prioritization of 

earlier arrivals. The objective could be maximizing energy delivered to vehicles, minimizing 

charging costs, minimizing waiting times, minimizing peak demand, or a combination of these. 

It is assumed that vehicle arrival and departure times are unknown ahead of operation. To 

address this problem, the smart charging strategies schedule charging based on the vehicles 

which have already arrived at a station, and are updated online by solving an optimization 

problem, so that the charging schedules are adjusted as new vehicles arrive. If vehicle arrival 

information was available ahead of operation, this information could be directly incorporated 

into the smart charging strategies. 

 

● State of the art 

Optimization based EVSC strategies can be roughly divided into the following four categories: 

 

1) Linear program (LP) strategies, which use a linear model for the relationship between battery 

charging power and state of charge (SoC) [4, 5, 6].  

2) Non-convex optimization strategies, which use a nonlinear relationship between battery SoC 

and maximum charging rate [7, 8, 9]. 

3) Problem-dependent heuristic strategies, including rule-based control, stochastic algorithm, 

and fuzzy expert systems [10, 11, 12]. 

4) Metaheuristic strategies, including particle swarm optimization, evolutionary algorithm, and 

colony optimization [13, 14, 15]. 

 

The advantages of LP strategies are: i) they are scalable; ii) there exist several fast and reliable 

LP solvers. However, the linear battery model is an overly simplistic assumption that can hinder 

the EVSC performance. On the other hand, using a nonlinear model can lead to an optimal 

result. However, there is no guarantee that the solution is globally optimal as the optimization 
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problem is non-convex. In addition, the computational complexity grows exponentially with 

the number of vehicles, limiting scalability. 

 

Recently, it was shown [16] that the problem of optimal charge scheduling across multiple 

vehicles, considering the nonlinear battery characteristics, can be formulated as a convex 

second order cone program (SOCP). This is a huge advantage over the non-convex formulation, 

as the solution is globally optimal. However, it is assumed that the solution of the SOCP is 

available in real time, which is not trivial, especially for a large-scale SOCP. 

 

 

● Objectives 
In this project we are interested to continue the work in [16]. We aim to provide a real-time 

solver that can calculate as quickly as possible the solution of a large-scale SOCP problem 

resulting from the charge scheduling across multiple vehicles. We will focus on the so-called 

operator splitting methods (OSMs), which belong to first-order optimization algorithms. The 

basic idea of these methods is to decompose a complex optimization problem into a series of 

simpler sub-problems. The main disadvantage of OSMs is that they generally require more 

iterations to converge to an optimal solution with a given tolerance than other optimization 

algorithms such as interior point methods. The advantage of OSMs is that under certain 

conditions, the operations required at each iteration are very simple. The operations can also 

be parallelized. Hence, the use of OSMs may be preferable especially for a large-scale problem. 

We will first start with the alternating direction method of multipliers (ADMM), which is one 

of the most popular OSMs. 

 

● Expected outcomes 
1. A Matlab/Python SOCP solver toolbox; 

2. A journal paper. 
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